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Summary

This report documents the results of an inviscid computational study conducted on several candidate aeroshell
con�gurations for a proposed '07 Mars lander. Eleven di�erent con�gurations were considered, and the
aerodynamic characteristics of each of these were computed for a Mach number of 23.7 at 10, 15, and 20
degrees angles of attack. The unstructured grid software FELISA with the equilibrium Mars gas option was
used for these computations. The pitching moment characteristics and the lift-to-drag ratios at trim angle
of attack of each of these con�gurations were examined to make a selection. The criterion for selection was
that the con�guration should be longitudinally stable, and should trim at an angle of attack where the L=D
is -0.25. Based on the present study, two con�guration were selected for further study.

Nomenclature

CA Axial force coe�cient

CD Drag coe�cient

CL Lift coe�cient

CN Normal force coe�cient

Cm Pitching moment coe�cient about the point ( 0.0, 0.0, -0.8018 )

Cp (p - p
1
)/q1, Pressure coe�cient

L=D CL /CD , Lift-to-drag ratio

lref Reference length for pitching moment ( =3.75 m.)

M1 Freestream Mach number

p Static pressure

p
1

Freestream static pressure

q
1

�1U2

1
/2, Freestream dynamic pressure

Sref Reference area ( =11.045 sq. m. )

T1 Freestream temperature ( K )

U1 Freestream velocity ( m/s )

x, y, z Cartesian co-ordinates of a given point; (The origin is at the nose, with the x-axis
in the vertical direction, the y-axis in the spanwise direction, and the z-axis in the
axial direction pointing into the stream.)

�1 Freestream density ( kg/m3 )

� Angle of attack, deg.

Introduction

In a e�ort aimed at arriving at a suitable aeroshell con�guration for a proposed '07 Mars lander, an extensive
computational study was done. For the purposes of controlling the aeroshell through its entry trajectory
it was required that the aeroshell should have a lift-to-drag ratio of -0.25 at the trim angle of attack. The
baseline con�guration of the aeroshell is symmetric. Hence it would trim only at zero angle of attack and
the lift-to-drag at the trim conditions would be zero. In order to make the con�guration asymmetric about
the pitch axis, tabs, aps, and bumps of varying sizes and shapes were added to the baseline aeroshell
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con�guration so that the resulting con�guration would trim at a non-zero angle. The pitching moment
characteristics and lift-to-drag ratio of each of these con�gurations were studied.

Unstructured grid technology is known to provide quick and reliable CFD solutions for complex ow
problems, particularly for hypersonic ows. Among the widely used unstructured grid software packages are
the FELISA [1] and the TetrUSS [2] systems. In the Aerothermodynamics Branch (AB) at NASA Langley
Research Center, FELISA inviscid ow solvers have been used extensively for the prediction of ow over
complex vehicles. See for example [3] & [4]. FELISA ow solvers, being inviscid, have the obvious limitations;
because of the absence of a boundary layer there is no skin friction and no ow separation e�ects. For lifting
bodies the inviscid ow solvers generally yield good normal force and pitching moment results as long as there
is no signi�cant ow separation. However, for a blunt body like the proposed aeroshell under hypersonic ow
conditions the CN , CA, and Cm are primarily due to the pressures over the forebody, and the e�ects of skin
friction are negligible. Further, since the aftbody pressures are small, they contribute little to the vehicle
aerodynamics. It is therefore expected that inviscid hypersonic ow computations would give reliable results
for the purpose of the present study.

This paper presents the results of an inviscid computational study for several di�erent aeroshell con�gu-
rations of the '07 Mars lander using the unstructured grid software FELISA with an equilibrium Mars gas
option. Only the forebodies of these con�gurations are simulated, and the aftbodies are ignored. Further,
since the aeroshell has a plane of symmetry and only symmetric ow conditions are considered, only one
half of the aeroshell is considered in the present study. The present study was done for a Mach number
of 23.7 with freestream conditions representing the peak heating point on a preliminary '07 Mars lander
trajectory. Computations were done for three angles of attack namely 10, 15, and 20 degrees. The pitching
moment characteristics and the lift-to-drag values at the trim angle of attack for each of the con�gurations
were examined. Based on this study, two new con�gurations were selected for further study.

The FELISA Software

All the computations of the present study were done using the unstructured grid software FELISA. This
software package has proved to be a powerful tool for fast inviscid grid generation and ow computations,
particularly for Earth atmospheric hypersonic ows (see [3] & [4]). The grid generation part of FELISA
consists of a code for generating a surface triangulation, and a code for discretization of the computational
domain using tetrahedral elements. The surface triangulation code employs the advancing front technique,
and the volume discretization code employs the Delaunay approach. FELISA software has two sets of ow
solvers|one applicable for transonic ows and the other for hypersonic ows. The hypersonic ow solver has
options for perfect gas air, equilibrium air, equilibrium Mars gas (0.97 CO2 and 0.03 N2, by mass), CF4 gas,
CO2 gas, and a �nite rate Mars gas. The equilibrium Mars gas option was added for the present study. The
hypersonic ow solver with the equilibrium Mars gas option was used in the present study. FELISA software
also includes several post-processing codes, including the one to compute the aerodynamic coe�cients by
integrating the surface pressures. More information on FELISA may be found in reference [1].

Geometry

The baseline '07 Mars lander aeroshell has a 3.75 m. diameter blunt conical forebody with a 70-deg. half-cone
angle. The nose radius is 0.9124 m. and the shoulder radius is 0.0914 m. Figure 1 shows the geometrical
shape of the baseline aeroshell. The reference quantities used to non-dimensionalize the aerodynamic loads
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Front View

3.75 m
dia.

Symmetry Plane

Side View

Axis

Nose radius
=0.9124m

Shoulder radius
=0.0914m

70°

Figure 1: The basic geometry of '07 Mars lander aeroshell

are as follows:

Reference area, Sref : 11.045 sq.m.
Reference length for pitching moment, lref : 3.75 m.
Pitching moment reference point: on the axis, 0.8018 m. behind the nose.

This baseline shape being symmetric would trim at � = 0 degrees with an L=D value of 0.0. In order to
get the required L=D of -0.25 at the trim angle of attack, several modi�cations were made to the shape of
the vehicle. These modi�cations were in the form of tabs and bumps of di�erent shapes and sizes. Figures 2
- 6 show the con�gurations considered in the present study. They include aps shown in Fig. 2, tabs (aft
and forward) shown in Fig. 3, bumps of three di�erent shapes shown in Fig. 4, ush ap as shown in Fig. 5,
and canted aps (80�and 90�) shown in Fig. 6.

Grids

All the con�gurations studied here are symmetric and the freestream ow is also symmetric. Hence only one
half of the body is simulated in these computations. The geometrical information of these con�gurations was
available in the form of IGES �les. These IGES �les were processed using the GridTool [5] software. The
computational domains were chosen to be su�ciently large with the surfaces of the bounding box su�ciently
away from the body so that, except for the exit plane, all the boundary surfaces were in the freestream ow.
The computational domains were made small enough so that the volume within these domains that were
not inuenced by the body was small. Figure 7 shows the computational domain used the con�guration
\Wide Flap 90". This is typical of all the computational domains used. The minimum grid spacing was
0.80 cm, and was chosen such that there were 10{15 points between the body and the bow shock in front
of the body. This provided su�cient resolution of ow features in that region. Choosing the appropriate
computational domain and specifying the grid spacings was done using GridTool. Finally, a set of FELISA
data �les required by the FELISA grid generator were created.
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0.512 m

2.2785 m

(a) Big Flap

0.761 m

2.2875 m

(b) Large Tab

Figure 2: Con�gurations with a \ap"in the aft position considered in the present study

0.28 m

2.514 m

(a) Aft tab

2.506 m

0.28 m

(b) Forward tab

Figure 3: Con�gurations with a \tab" considered in the present study
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90°

36°

(a) Big Bump

20°

30°

80°

(b) Dual Cone 70-80-40

45°

55°

80°

(c) Dual Cone 70-80-90

Figure 4: Con�gurations with a \bump" considered in the present study

1.1 m

2.25 m

110°

(a) Wide-Flap 70 (WF-2.2-2.25-70)

0.7 m

2.25 m
R=1.875 m

r=0.9124 m

110°

(b) Wide-Flap 70N (WF-2.2-2.25-70 narrow)

Figure 5: Con�gurations with ush \wide ap" considered in the present study
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0.425 m

2.294 m

100°

(a) Wide-Flap 80 (WF-.8-.5-80)

0.425 m

2.115 m

90°

(b) Wide-Flap 90 (WF-.8-.3-90)

Figure 6: Con�gurations with canted \wide ap" considered in the present study

Using the data �les and the FELISA surface triangulator, the surface triangulation was generated. The
body surface triangulation (near the tab) and the triangulation of the symmetry plane for the \Wide Flap
90" case are shown in �g. 8. This grid has 55,214 surface points on the entire body, and 19,731 points on
the symmetry plane. After the surface triangulation was done, the volume grid of tetrahedral elements was
generated for each case. The tetrahedral (volume) grid for this case (not shown) has over 1.6M points. The
processing of the IGES �les and grid generation was done on an SGI Onyx computer with 2GB memory.
Generation of surface triangulation generally took 20{30 minutes and the volume grid generation required
3{4 hours on an SGI Octane computer.

Flow Solution

The unstructured grids were partitioned so that the solutions could be run on a parallel computer using
(typically) 16{32 processors. The FELISA hypersonic ow solver with the Mars gas option was used for all
the ow computations. Each ow solution was started with the low-order option, and after a few hundred
iterations, the higher-order option was turned on, and the solution was run to convergence. After every 100
iteration, the surface pressures were integrated, and the aerodynamic loads, namely the normal and the axial
forces, and the pitching moment acting on the body were computed. The ow solution was assumed to be
converged when these integrated loads remained essentially constant. This required 8000{10000 iterations,
and 180{200 hours of CPU time. Aerodynamic loads obtained by integrating the surface pressures were
non-dimensionalized in the conventional manner, and the aerodynamic coe�cients namely, CN , CA, CL,
CD , Cm, and L=D were obtained.
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Computational
Domain

Symmetry
Plane

Side View

Freestream

z-axis

α, Angle
of attack

Figure 7: Computational domain for the \Wide-Flap 90" con�guration

Front View
NP=55,214

Tab

Symmetry
Plane

Np=19,731

Figure 8: Surface grids for the \Wide-Flap 90" con�guration
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All the computations reported here were done for a freestream Mach number of 23.7 and for 10, 15,
and 20 degrees angles of attack. Note that the trim devices are on the lee side of the aeroshell at positive
angles of attack as shown in Fig. 7. The freestream gas was assumed to Mars atmospheric gas in chemical
equilibrium. The freestream velocity, density, temperature, and Mach number correspond to those at the
peak heating point on a preliminary '07 Mars lander trajectory, and are shown below:

Velocity, V1: 4920 m=s
Density, �1: 4:15 10�4 (kg=m3)
Temperature, T1: 158.5 Kelvin
Mach Number, M1: 23.7
Mars Atmosphere: 0.97 CO2 and 0.03 N2, (by mass)

Results and Discussion

The results of the present computations are listed in Tables 1, 2, and 3. It should be recalled at this point
that the present computations are inviscid; hence the skin friction and ow separation e�ects are absent. In
the present case, the axial force coe�cients are large due to the very high pressures on the blunt forebody.
Absence of the skin friction in inviscid computations leads to somewhat lower axial forces. But contribution
of the skin friction to axial force in the present case is expected to be a small fraction of the total axial force.
Further, since the boundary layer is absent, the e�ects of boundary layer separation (over the forebody) on
the aerodynamic loads are also absent. This could become a factor in those cases where there is a possibility
of ow separation on the forebody, like the canted aps con�gurations. In viscous ow, the ow over the
body approaching the canted aps could separate due to the adverse pressure gradients.

In the present computations, only the forebody is simulated and the aftbody is ignored. Hence the
aftbody contributions to the aerodynamic loads are absent in the present results. The present ow solver
could not simulate the ow over the aftbody where the ow is separated and highly viscous dominated. At
low Mach number conditions, the pressure in the separated ow regions over the aftbody would be large,
and contribute signi�cantly to the axial force See, for example, Gno�o, et al. [6]. However, at Mach 23.7,
the pressures on the aft-body are going to be very small, and contribute very little to the aerodynamic
characteristics of the vehicle.

The present results are sorted into three groups for convenience. The �rst group is called the \TABS"
group, and consists of the Big ap, the Large tab, the Aft-tab, and the Fwd-tab. The second group is called
the \BUMPS" and consists of the BigBump, the DualCone 70-80-40, and the DualCone 70-80-90. The third
group is called the \FLAPS", and consists of the Wide Flap 70 (WF70), the Wide Flap 70N (WF70N), the
Wide Flap 80 (WF80), and the Wide Flap 90 (WF90) con�gurations.

The \TABS" con�gurations:

As noted before, the TABS group included the Big ap, the Large tab, the Aft-tab, and the Fwd-tab
con�gurations. The Cp contours (for �=15 degrees) on the symmetry plane in the vicinity of the ap for
each of the four cases are shown in Fig. 9. In all these cases, there is a strong shock from the ap. This shock
is formed as the ow is turned due the ap, and can be seen in all the four cases. This shock intersects the
bow shock in front of the body, and forms a complex shock interference pattern. Depending on the size of
the ap and its location relative to the bow shock, the ow from the shock intersection could impinge on the
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Big flap

Flap

Large flap

Flap

Aft tab

Flap

Fwd tab

Flap

Figure 9: Cp contours on the symmetry plane near the ap for the \TAB" con�gurations, �=15 degrees

ap. This happens for the fwd-tab con�guration, see Fig. 9. Such an impingement would lead to high surface
pressures. For the �rst three con�gurations where the ap in set back from the maximum body diameter
location, the interference ow does not a�ect the ap. For the Big Flap and the Large tab con�gurations,
the maximum values of surface Cp, which occur at 20 degrees angle of attack are 2.81 and 2.87, respectively.
For the Aft-tab con�guration, the ow from the shock intersection grazes the ap tip. This leads to slightly
higher Cp values (3.76). But for the Fwd-tab con�guration, the ow from the shock interference impinges
on the ap. The peak values of the Cp in this case is 4.20. The surface Cp contours plot for the Large tab
case is shown in Figure 10. The high pressures on the ap produce a large axial force, and, because of the
location of the ap, produce a large pitching moment. The large pressure gradients associated with such
locally high pressures will lead also to high surface heating.

As noted before, the Big ap, the Large tab, the Aft-tab have the tabs located aft of the maximum
diameter position. As a result, these con�gurations have some space between the shoulder and the aps,
where a \re-circulatory" ow is observed. (This re-circulatory ow in the present inviscid computations is
surprising, and is possibly due to arti�cial viscosity in the numerical scheme used in the ow solver.) This
is shown in Figure 11 for the Large tab con�guration. Similar features are observed also for the Aft-tab
and the Large tab con�gurations. In actual viscous ows, such a ow could lead to high surface heating
and is considered undesirable. For the fwd-tab con�guration, such a ow re-circulatory ow does not exist.
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� CN CA Cm CL CD L=D

(deg:)

Con�guration: No Tab (Base line)

10 3.2923E-02 1.6249 -2.0272E-02 -2.4974E-01 1.6059 -1.5551E-01

15 5.4037E-02 1.5324 -3.4823E-02 -3.4441E-01 1.4941 -2.3051E-01

20 7.6512E-02 1.4266 -5.0406E-02 -4.1602E-01 1.3667 -3.0440E-01

Con�guration: Big ap

10 2.8492E-02 1.6867 1.4809E-02 -2.6483E-01 1.6660 -1.5896E-01

15 5.1645E-02 1.5868 -3.9316E-03 -3.6081E-01 1.5461 -2.3337E-01

20 7.4887E-02 1.4734 -2.3914E-02 -4.3356E-01 1.4102 -3.0746E-01

Con�guration: Large tab

10 2.2152E-02 1.7155 3.0338E-02 -2.7608E-01 1.6933 -1.6304E-01

15 4.8900E-02 1.6166 1.2206E-02 -3.7118E-01 1.5742 -2.3579E-01

20 7.2412E-02 1.4974 -1.0772E-02 -4.4409E-01 1.4319 -3.1015E-01

Con�guration: Aft-tab (solid-aft)

10 2.9782E-02 1.6812 1.4381E-02 -2.6260E-01 1.6608 -1.5812E-01

15 5.1312E-02 1.5872 -1.2232E-03 -3.6124E-01 1.5464 -2.3360E-01

20 7.4273E-02 1.4747 -2.0810E-02 -4.3459E-01 1.4112 -3.0796E-01

Con�guration: Fwd-tab (solid-fwd)

10 3.2493E-02 1.6806 9.2573E-03 -2.5983E-01 1.6607 -1.5646E-01

15 5.3200E-02 1.5939 -2.2004E-03 -3.6113E-01 1.5533 -2.3249E-01

20 7.4714E-02 1.4932 -1.5242E-02 -4.4050E-01 1.4287 -3.0832E-01

Table 1: Aerodynamic coe�cients for \TABS" con�guration with equilibrium Mars gas, Mach 23.7

However, the ow on the body approaching the ap could separate due the adverse pressure gradient at the
junction of the ap and the body.

The computed aerodynamic data for these con�gurations are presented in Table 1, and shown plotted in
Figures 12 to 14. The pitching moment curves, Fig. 12, show that the trim angle of attack is 17.7 degrees
for the Large tab con�guration, and is 14.5 degrees for the other con�gurations. An examination of Fig. 13
shows that \TABS" con�gurations have very similar L=D characteristics. The trim L=D for the Large tab
con�guration is -0.275, and for the other con�gurations in this group is about -0.225. Thus it is observed
that proper selection of the ap size could lead to the desired L=D of -0.25 at the trim condition. Figure 14
shows the CD for the four con�gurations.

The \BUMPS" con�gurations:

The second group called the \BUMPS" consist of the BigBump, the DualCone 70-80-40, and the DualCone
70-80-90 con�guration. The computed aerodynamic data for these con�gurations are presented in Table 2,
and shown plotted in Figures 18 to 20. The Cp contours on the body surface and on the symmetry plane
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Figure 12: Pitching moment coe�cient for the \TABS" con�gurations
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Figure 13: Lift-to-Drag ratio for the \TABS" con�gurations
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Figure 14: Drag coe�cient for the \TABS" con�gurations

for the three con�gurations at �=15 degrees are shown in Figures 15 to 17. For the BigBump con�guration
there is a region of very high pressures (Cpmax=8.4) over the \bump". This high pressure is due to the
shock interference as observed in the \TABS" con�gurations, and is considered undesirable from surface
heating consideration. The Cp contours on the body surface and on the symmetry plane for the DualCone
70-80-40 and DualCone 70-80-90 con�gurations shown in Figs. 16 and 17 do not show any high pressure
spots. The computed aerodynamic data for these con�gurations are presented in Table 2, and shown plotted
in Figures 18 to 20. The pitching moment curves for these two cases indicated that the DualCone 70-80-40
con�guration trims at an � of about 8 degrees, where is L=D is only -0.1, whereas the DualCone 70-80-90
con�guration trims at 15 degrees, where the L=D is about -0.175. Hence these con�gurations are not suitable
for the present application. Among the three con�gurations in this group, the BigBump has a nonlinear
pitching moment variation with angle of attack. The Cm curve barely grazes the Cm =0 line, indicating the
con�guration hardly trims. All the con�gurations in the \BUMPS" group are judged to be unsuitable for
the present application.

The \FLAPS" con�gurations:

This group called the \FLAPS" consists of the Wide Flap 70 (WF70), the Wide Flap 70N (WF70N), the
Wide Flap 80 (WF80), and the Wide Flap 90 (WF90) con�gurations. The computed aerodynamic results
for these con�gurations are tabulated in Table 3 and shown plotted in Figures 25 to 27.

Figure 21 shows the Cp contours on the symmetry plane for the WF70, WF80, and WF90 con�gurations
for � =15 degrees. The WF70N is not included in this �gure. The only di�erence between WF70 and
WF70N is that the latter has a ap that is not as wide as that of the former. For both WF70 and WF70N
cases, the ap is an extension of the conical part of the body. Hence, the ow approaching the ap ows
over the ap smoothly. For the WF80 and WF90 con�gurations, however, the ow has to turn abruptly at
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Figure 15: CP contours for the BigBump con�guration near the bump and on the symmetry plane, �=15
degrees
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Figure 17: CP contours for the DualCone 70-80-90 con�guration on the body and on the symmetry plane,
�=15 degrees

� CN CA Cm CL CD L=D

(deg:)

Con�guration: BigBump(R) (solid-.3-72-20)

10 8.2426E-02 1.7278 2.0614E-02 -2.1885E-01 1.7158 -1.2755E-01

15 1.0637E-01 1.6181 -3.4294E-03 -3.1605E-01 1.5905 -1.9871E-01

20 1.2617E-01 1.5746 6.8939E-03 -4.1997E-01 1.5228 -2.7580E-01

Con�guration: DualCone 70-80-40 (dualCone-70-80-40)

10 8.9553E-02 1.6626 -5.8626E-03 -2.0052E-01 1.6529 -1.2131E-01

15 1.0350E-01 1.5838 -1.6877E-02 -3.0993E-01 1.5566 -1.9911E-01

20 1.1727E-01 1.4915 -2.9545E-02 -3.9993E-01 1.4417 -2.7741E-01

Con�guration: DualCone 70-80-90 (dualCone-70-80-90)

10 1.4072E-01 1.7151 9.6060E-03 -1.5924E-01 1.7135 -9.2935E-02

15 1.5129E-01 1.6468 2.2144E-04 -2.8010E-01 1.6299 -1.7186E-01

20 1.6093E-01 1.5624 -1.1694E-02 -3.8315E-01 1.5232 -2.5154E-01

Table 2: Aerodynamic coe�cients for the \BUMPS" con�guration with equilibrium Mars gas, Mach 23.7
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Figure 18: Pitching moment coe�cient for the \BUMPS" con�gurations
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Figure 19: Lift-to-Drag ratio for the \BUMPS" con�gurations
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Figure 20: Drag coe�cient for the \BUMPS" con�gurations

the junction of the body and the ap. This is particularly severe in the WF90 case where the ow has to
turn through a 20 degrees angle. Because the ow approaching the ap is supersonic, and it has to change
direction at the ap, an oblique shock starts from the junction of ap and the body. In viscous ows, the
pressure rise associated with this shock could lead to local boundary layer separation. Since the present
computations are inviscid, such a ow separation is absent. The shock due to the ap and the bow shock in
front of the body interfere. For certain conditions, the interference could impinge on the ap. This happens
for the WF90 con�guration. This is clearly evident from Fig. 21. Such an impingement generally leads to
high surface pressures.

The pressure distributions on the three aps for � =15 degrees are shown in Figs. 22 to 24. The maximum
values of Cp are 1.98 for WF70, 2.47 for WF80, and 7.37 for WF90. Due to the ow impingement, very high
Cp values are observed on the WF90. High pressures on the ap would lead to larger axis force due to the
ap, and because of its moment arm produce large pitching moment. In the present case such a comparison
cannot be made because the areas of the aps in the three cases are di�erent. It should be borne in mind is
that large pressure gradients are generally associated with locally high heating which is not desirable.

The pitching moment coe�cients and the lift-to-drag values are shown plotted in Fig. 25 and 26. All
the con�guration in this group have stable pitching moment characteristics. The WF70 con�guration has
a trim angle of attack of 18.8 degrees, and a corresponding L=D of -0.33. The WF70N has a trim angle of
only 14 degrees, and a trim L=D of -0.26. The WF80 and WF90 con�gurations exhibit a slightly nonlinear
Cm characteristics. This is particularly evident for the WF90 case. Further, the trim L=D values for these
two cases are about -0.25. Thus, all the \FLAPS" con�gurations can meet the required L=D of -0.25 at the
trim conditions. Proper sizing of the aps can tailor the L=D. Figure 27 shows the variation of the CD for
the four con�gurations.
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Figure 21: Symmetry plane Cp contours for the WF70, WF80, and WF90 con�gurations for �=15 degrees
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Figure 23: Cp contours for the WF80 con�guration �=15 degrees
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Figure 24: Cp contours for the WF90 con�guration �=15 degrees
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� CN CA Cm CL CD L=D

(deg:)

Con�guration: Wide Flap 70 (WF-2.2-2.25-70)

10 -8.1397E-03 1.7421 3.7963E-02 -3.1053E-01 1.7142 -1.8115E-01

15 1.6088E-02 1.6375 1.6900E-02 -4.0828E-01 1.5859 -2.5745E-01

20 4.2235E-02 1.5162 -6.1653E-03 -4.7888E-01 1.4392 -3.3274E-01

Con�guration: Wide Flap 70N (WF-2.2-2.25-70 narrowap)

10 7.2172E-03 1.6953 1.5520E-02 -2.8728E-01 1.6708 -1.7194E-01

15 2.9871E-02 1.5954 -3.1296E-03 -3.8406E-01 1.5487 -2.4798E-01

20 5.4471E-02 1.4794 -2.3776E-02 -4.5481E-01 1.4088 -3.2283E-01

Con�guration: Wide Flap 80 (WF-.8-.5-80)

10 1.9338E-02 1.6983 1.6264E-02 -2.7586E-01 1.6758 -1.6461E-01

15 3.9086E-02 1.6053 1.5700E-03 -3.7772E-01 1.5607 -2.4202E-01

20 6.0396E-02 1.4972 -1.5445E-02 -4.5531E-01 1.4275 -3.1895E-01

Con�guration: Wide Flap 90(R) (WF-.8-.3-90)

10 3.2508E-02 1.6949 1.3960E-02 -2.6230E-01 1.6748 -1.5662E-01

15 5.0208E-02 1.6118 4.7854E-03 -3.6867E-01 1.5699 -2.3484E-01

20 7.0650E-02 1.4935 -1.7627E-02 -4.4442E-01 1.4276 -3.1131E-01

Table 3: Aerodynamic coe�cients for the \FLAPS" con�gurations with Mars gas in equilibrium, Mach 23.7
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Figure 25: Pitching moment coe�cient for the \FLAPS" con�gurations
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Figure 26: Lift-to-Drag ratio for the \FLAPS" con�gurations
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Figure 27: Drag coe�cient for the \FLAPS" con�gurations
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Conclusions

A computational study was done on several aeroshell con�guration for a proposed '07 Mars lander to assist
in the selection of a suitable con�guration with the desired aerodynamic characteristics. The inviscid longi-
tudinal aerodynamic characteristics for 11 di�erent con�gurations were computed in Mars gas environment
at Mach 23.7 with the freestream conditions corresponding to the peak heating point on an initial trajec-
tory at three angles of attack namely 10, 15, and 20 degrees. The FELISA software was used for all these
computations. The pitching moment and lift-to-drag ratios of each of the con�gurations were examined for
stable pitching moment characteristics and desired lift-to-drag ratio at the trim angle of attack. Based on
the �ndings of the present study, two new con�gurations for aps of 70 degrees and 80 degrees were selected
for further study. Detailed ow solutions were done for these two con�gurations over a Mach number range
of 2{23.7 at 10, 15, and, 20 degrees angles of attack as presented in Ref. [7].
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